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Background and aims: Pregnancy exerts metabolic changes with increasing levels of total cholesterol and
triglycerides as prominent features. Maternal hypercholesterolemia may thus contribute to an unfa-
vorable in utero environment potentially influencing the susceptibility of adult cardiovascular disease in
the offspring. We investigated the impact of maternal familial hypercholesterolemia (FH) on pre-
treatment plasma lipids and C-reactive protein (CRP) levels in non-statin treated FH children.
Methods: Children with FH (n ¼ 1063) aged between 0 and 19 years were included. Of these, 500 had
inherited FH maternally, 563 paternally and 97.6% had a verified FH mutation. Information about in-
heritance, mutation type and pretreatment levels of blood lipids and CRP was retrieved from the medical
records.
Results: There were no significant differences in the plasma levels of lipids and C-reactive protein (CRP)
in children with maternal FH compared with children with paternal FH, (0.12 � P � 0.90). Independent of
which parent transmitted FH, children with LDL receptor negative mutations had significantly higher
levels of total and LDL cholesterol and Apolipoprotein (Apo) B, and lower levels of HDL cholesterol and
ApoA1, compared with children with other LDL receptor mutations (P < 0.001).
Conclusion: Maternal inheritance of FH was not associated with detectable long-term effects in the
offspring's phenotype measured by adverse lipid profiles and increased CRP levels, whereas a LDL re-
ceptor negative mutation was associated with an unfavorably phenotype in FH offspring. Our findings do
not support the fetal origin of adulthood disease hypothesis, while at the same time not excluding the
hypothesis since other pathways leading to atherosclerosis may be involved.

© 2015 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Atherosclerosis is the underlying cause of most cardiovascular
diseases (CVDs), and is driven by an interrelated network of
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abnormalities in lipids, inflammatory and hemostatic pathways,
including immune cells and a variety of mediators prompting this
progressive process [1]. The atherogenesis seems to start early in
life, and interestingly, a pregnancy itself exerts metabolic changes
with increasing levels of total cholesterol and triglyceride from first
to third trimester as a prominent feature [2]. Maternal hypercho-
lesterolemia may thus contribute to an unfavorable in utero envi-
ronment which could lead to an increased susceptibility of CVD in
the offspring later in life [3e5]. Indeed, oxidation of low density
lipoprotein (LDL) and fatty streak formation occurs during fetal
development and maternal hypercholesterolemia may potentiate
these processes [6]. Additionally, maternal hypercholesterolemia
during pregnancy exacerbates atherogenesis in children aged 1e13
years as shown by autopsy in deceased children [7,8]. Taken
together, existing data suggest that maternal hypercholesterolemia
can adversely influence long-term health in the offspring, but the
mechanisms are far from clear.

Hypercholesterolemia is highly prevalent, therefore, any asso-
ciation between maternal cholesterol level and disease suscepti-
bility in the offspring is important to understand. However,
maternal cholesterol level is strongly influenced by factors such as
diet and lifestyle, making it challenging to study the isolated effect
of maternal hypercholesterolemia on cardiovascular risk factors in
their offspring. Familial hypercholesterolemia (FH) is an inherited
disorder with a major locus effect caused by mutations in the LDL
receptor-(LDLR), apolipoprotein B- (apoB) (APOB) or proprotein
convertase subtilisin/kexin type 9 (PCSK9) -gene [9e11]. FH may
therefore serve as a model disease to study the isolated effect of
maternal hypercholesterolemia on CVD development and risk
factors in their children.

Pregnant women with FH have higher plasma lipid levels and
are more pro-coagulant compared with healthy pregnant women
[3,4]. FH subjects with maternal inheritance have higher all-cause
mortality than FH subjects with paternal inheritance [12], but
findings on plasma lipids are inconsistent [13,14]. At adult age,
heterozygous FH shows large phenotypic variation related to
environmental and genetic factors, whereas children with FH show
a more homogenous phenotype. Therefore the effect of maternal
inheritance should be assessed before exposure to these additional
factors [15]. Notably, children with FH have raised plasma choles-
terol and increased intima-media thickness (IMT) of their carotid
arteries compared with healthy non-FH children [16]. Based on this
accelerated atherosclerotic process, children with FH represent a
unique model system to investigate the effect of maternal hyper-
cholesterolemia on CVD and related risk factors such as lipids and
inflammatory markers.

The aim of the present study was to determine the impact of
maternal and paternal FH on pre-treatment plasma lipids and C-
reactive protein (CRP) in children with FH. To validate our study we
also assessed the known effect of LDL receptor mutation type on
the same markers.

2. Materials and methods

2.1. Subjects

Subjects with FH from the Lipid Clinic, Oslo University Hospital,
Oslo, Norway and the Cardiovascular Genetics Center and the
Sophia Children's Hospital of the Erasmus MC Rotterdam, the
Netherlands, were recruited to the study. All Norwegian children
had age below 20 years and all Dutch childrenwere below 19 years.
From the Norwegian database, we included all subjects with an
International Classification of Diseases (ICD)-10 primary diagnosis
of Familial Hypercholesterolemia between 1990 and September
2010. The Dutch database consisted of children with FH, who
visited the outpatient clinics between April 1992 and April 2014.
Exclusion criteria were 1) no definite FH diagnosis, 2) unknown
inheritance status, 3) no medical record at the outpatient clinics, 4)
above 18 or 19 years at first visit at the respective outpatient clinic,
5) deceased patients, 6) homozygous or compound heterozygous
FH diagnosis, 7) growth hormone replacement therapy, 8) un-
known lipid profile and 9) currently on cholesterol-lowering
medication. In addition, one patient was excluded due to long-
term case history of osteogenesis imperfecta (Fig. 1). All partici-
pants had a definite FH diagnosis based on genetic testing or clin-
ically defined by the Dutch Lipid Clinic Network classification
(World Health Organization publication no WHO/HGN/FH/CONS/
99.2) where definite (certain) FH is defined with a score of 8 or
more. Patients were categorized into those in whom FH was
transmitted by the mother (maternal FH) or by the father (paternal
FH). For three patients, FH inheritance was unknown since both
parents had heterozygous FH and the mutation type was either
similar in both parents (n ¼ 1) or unknown in the child (n ¼ 2).
Nevertheless, as these patients had been exposed to a familial hy-
percholesterolemic intrauterine environment, they were catego-
rized as maternal FH. From the medical records, demographic
characteristics, mutation type, family history of early CVD, and pre-
treatment information of weight, height, Achilles tendon thick-
ening and levels of blood lipids and CRP was recorded. For lipo-
protein (a) (Lp[a]), samples below the different detection limits
were set to the detection limit of 105 mg/l. The method for CRP
measurements had changed during the period in which the chil-
dren had visited the out-patient clinic. The old CRP methods had
cut-off values for CRP measurements <5 mg/l or <8 mg/l. In the
current study, these measurements were excluded as there was no
knowledge as towhether the actual valuewas<1mg/l or closer to 5
or 8 mg/l. Furthermore, when there was no absolute value
measured and only cut-off values were registered (as <1 mg/l or
<0.6 mg/l), these values were both set to 1 mg/l in the analysis.
Finally, samples with values > 20 mg/l were set to 20 mg/l. FH
children with a mutation in the LDL receptor were categorized into
two groups: LDL receptor negative mutations including class 1 and
2A mutations comprising nonsense, splice site mutations, or large
rearrangements [17,18] and all remaining LDL receptor mutations
(defective and unclassified), respectively. Blood biochemistry pa-
rameters including lipids and CRP were measured by standard
methods at the Oslo University Hospital, Rikshospitalet, Oslo,
Norway (NS-EN ISO 15189:2007 accredited) and at the ErasmusMC,
Rotterdam, the Netherlands.

This study was conducted according to the guidelines laid down
in the Declaration of Helsinki and was approved by the Regional
Committee of Medical and Health Research Ethics, south-east re-
gion of Norway where permission to perform the study with pas-
sive consent (where the subjects were given an opportunity to
withdraw consent) was approved. The Medical Ethical Review
Committee of the Erasmus MC, the Netherlands considered the
protocol non WMO (Wet Medisch Onderzoek) research and
therefore it did not have to be reviewed.

2.2. Statistics

To account for familial dependency, differences in lipids and CRP
between children with maternal and paternal inherited FH were
tested using a random intercept linear mixed model, adjusting for
between-family variation, age, gender and body mass index (BMI)
in addition to an indicator for paternal or maternal FH inheritance.
In secondary analyses, indicators for LDL receptor mutation type
were included. All linear and logistic mixed models were fitted
using the package lme4, while P-values for the fixed effects were
calculated using the package lmerTest, both in the open-source



Fig. 1. Flow-chart of the included study population.
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statistical software R, version 3.1.0 [19]. P-values <0.05 were
considered statistically significant. As adjusted and unadjusted ef-
fect estimates were not very different; unadjusted P-values are
given in all tables.

The analyses were also performed by an independent sample t-
test comparing the two groups (FH children with maternal vs
paternal inheritance) and using unique parentechild pairs from the
study sample (n ¼ 777), where the youngest child (among the
siblings) in each family was included in the analysis, resulting in
similar findings (data not shown).

Data are described by mean and standard deviation (SD) if
normally distributed, or median and 25the75th percentile for
variables without normal distribution.
3. Results

3.1. Subject characteristics

In total 1063 children with FH aged 10.7 years (mean) between
0 and 19 years (minemax) were eligible for comparison (Fig. 1),
whereof 500 (47%) had inherited FH maternally and 563 (53%)
paternally. Subject characteristics are given in Table 1. Of the study
sample, 97.6% had a verified FHmutation in the family, whereas the
remaining 2.4% had a clinical diagnosis. In total, 125 different LDL
receptor mutations were found. Additionally, one mutation for
PCSK9 and three for APOB were present. Totally, 624 (63.6%) chil-
dren with genetically verified FH were categorized to have a LDL
receptor negative mutation, which is similar to previous reported
data [20]. Baseline characteristics were similar in the Norwegian
(n¼ 808) and Dutch (n¼ 255) study samples (Table 1). There was a
positive significant correlation between BMI and CRP in the FH
subjects (n ¼ 241) (rsp ¼ 0.213; P ¼ 0.001).
3.2. Effect of FH inheritance on blood lipids and CRP

Children with maternal FH did not have significantly different
pre-treatment levels of total, LDL or high density lipoprotein (HDL)
cholesterol, triglycerides, ApoA1, ApoB, Lp(a) LDL/HDL and ApoB/
ApoA1 than the children with paternal FH (0.12 � P � 0.90)
(Table 2). To investigate the effect of the type of FH transmission on
markers of systemic inflammation with relevance to atheroscle-
rosis, CRP was available from a subgroup of the Norwegian FH
children (n ¼ 248). No significant differences were found in pre-
treatment levels of CRP between children with maternal and
paternal FH (P¼ 0.18). Gender, age and distribution of LDL receptor-
negative mutations were similar among the childrenwith maternal
and paternal inheritance (Table 2). Stratified by age (below or above
12 years), there were no significant differences in plasma total, LDL
or HDL cholesterol related to inheritance of FH in children below
(n ¼ 658) or above (n ¼ 405) 12 years of age (0.18 � P � 0.99) (data
not shown). However, a small but significantly higher plasma tri-
glyceride level was detected in children above the age of 12 years
with maternal inheritance of FH (n ¼ 183) [1.0 (0.7e1.3) mmol/L]
compared with children with paternal inheritance (n ¼ 209) [0.9
(0.6e1.2) mmol/L] (P ¼ 0.02).

3.3. Effect of LDL receptor negative mutations on blood lipids and
CRP

We next investigated differences in lipoproteins and CRP in FH
children with LDL receptor negative mutations (n ¼ 624) compared
to FH children with other mutations (n ¼ 357), excluding children
with mutations in APOB and PCSK9. Children with LDL receptor
negative mutations had significantly higher levels of total and LDL
cholesterol in addition to ApoB, and lower levels of HDL cholesterol
and ApoA1 compared with children with other LDL receptor



Table 1
Characteristics of study sample.

Total study sample Norwegian sample Dutch sample

n n n

Age, years 10.7 (4.0) 1063 10.7 (4.0) 808 10.7 (4.1) 255
Females, n (%) 528 (49.7) 1063 394 (48.8) 808 134 (52.5) 255
Weight, kg 39.0 (26.5e53.6) 896 38.0 (26.3e53.0) 675 41.5 (27.1e54.8) 221
Height, cm 147 (130e162) 881 146 (129e161) 662 151 (131e165) 219
BMI, kg/m2 17.9 (16.0e20.6) 872 17.9 (16.0e20.6) 654 18.1 (16.0e20.6) 218
Achilles tendon thickening, n (%) 36 (4.5) 804 30 (5.1) 589 6 (2.8) 215
Mutation-verified FH within family, n (%) 1038 (97.6) 1063 786 (97.3) 808 252 (98.8) 255
Number of different LDL receptor mutations 125 981 76 752 61 229
LDL receptor negative mutations, n (%) 624 (63.6) 981 468 (62.2) 752 156 (68.6) 229

Data are presented as mean (SD) or median (25the75th percentile) for continuous variables, and as frequencies (%) for categorical variables.
BMI: body mass index, FH: familial hypercholesterolemia, LDL: low-density lipoprotein, CVD: cardiovascular disease.

Table 2
Biochemical and clinical parameters of all children and subdivided by inheritance.

Total population Maternal inheritance Paternal inheritance P value

n n n

Descriptives:
Females, n (%) 528 (49.7) 1063 241 (48.2) 500 287 (51.0) 563
Age, years 10.7 (4.0) 1063 10.7 (4.0) 500 10.7 (4.0) 563
LDL receptor negative mutations, n (%) 624 (63.6) 981 293 (63.0) 465 331 (64.1) 516

Lipids:
Total cholesterol, mmol/l 7.8 (1.5) 1063 7.9 (1.6) 500 7.7 (1.5) 563 0.12
LDL cholesterol, mmol/l 5.9 (1.5) 918 6.0 (1.6) 434 5.8 (1.4) 484 0.15
HDL cholesterol, mmol/l 1.3 (0.3) 1035 1.3 (0.3) 485 1.3 (0.3) 550 0.74
Triglycerides, mmol/l 0.8 (0.6e1.1) 1028 0.8 (0.6e1.1) 484 0.8 (0.6e1.1) 544 0.24
ApoA1, g/l 1.3 (0.2) 509 1.3 (0.2) 237 1.2 (1.1e1.4) 272 0.63
ApoB, g/l 1.6 (0.5) 528 1.5 (0.4) 245 1.5 (1.3e1.8) 283 0.77
Lp (a), mg/l 242 (105e514) 521 220 (105e502) 247 256 (105e531) 274 0.90
LDL/HDL ratio 4.5 (3.5e5.7) 897 4.6 (3.5e5.8) 423 4.4 (3.4e5.5) 474 0.13
ApoB/ApoA1 ratio 1.2 (0.9e1.6) 508 1.2 (0.9e1.6) 237 1.2 (0.9e1.5) 271 0.53

Inflammation markers:
CRP, mg/l 1.0 (0.9e1.2) 248 1.0 (0.8e1.4) 137 1.0 (0.9e1.0) 111 0.18

Data are presented as mean (SD) or median (25the75th percentile) for continuous variables and as frequencies (%) for categorical variables.
LDL: low-density lipoprotein, FH: familial hypercholesterolemia, CVD: cardiovascular disease, HDL: high-density lipoprotein.
Apo B/A1: apolipoprotein B/A1, Lp (a): lipoprotein (a), CRP: C-Reactive protein.
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mutations (P < 0.001) (Table 3). Moreover, both the LDL/HDL and the
ApoB/ApoA1 ratios were significantly different between the groups
(P < 0.001). In contrast, no significant differences were found in
plasma levels of triglycerides, Lp(a) and CRP levels between the two
Table 3
Biochemical and clinical parameters of children with LDL receptor negative and non-LDL

LDL receptor negative mutations

n

Descriptives:
Females, n (%) 312 (50.0) 624
Age, years 10.2 (7.6e13.1) 624

Lipids:
Total cholesterol, mmol/l 8.1 (1.5) 624
LDL cholesterol, mmol/l 6.2 (1.5) 516
HDL cholesterol, mmol/l 1.2 (1.0e1.4) 609
Triglycerides, mmol/l 0.8 (0.6e1.1) 611
ApoA1, g/l 1.2 (1.1e1.4) 286
ApoB, g/l 1.6 (1.4e2.0) 301
Lp (a), mg/l 257 (105e531) 274
LDL/HDL ratio 4.9 (3.8e6.0) 505
ApoB/ApoA1 ratio 1.4 (1.0e1.7) 286

Inflammation markers:
CRP, mg/l 1.0 (0.6e1.1) 121

Data are presented as mean (SD) or median (25the75th percentile) for continuous varia
LDL: low-density lipoprotein, FH: familial hypercholesterolemia, CVD: cardiovascular di
Apo B/A1: apolipoprotein B/A1, Lp (a): lipoprotein (a), CRP: C-reactive protein.
groups (0.11� P� 0.68) (Table 3). Finally, no significant difference in
any of the plasma lipids or CRP was observed in children with LDL
receptor negative mutation with maternal versus paternal trans-
mission of FH (0.25 � P � 0.90) (data not shown).
receptor negative mutations.

Other mutations P value

n

178 (49.9) 357
11.4 (8.8e13.9) 357

7.4 (1.5) 357 <0.001
5.5 (1.4) 328 <0.001
1.3 (1.1e1.5) 347 <0.001
0.8 (0.6e1.1) 340 0.68
1.3 (1.2e1.4) 181 0.003
1.3 (1.1e1.6) 186 <0.001
219 (105e433) 206 0.60
4.0 (3.1e5.1) 320 <0.001
1.0 (0.8e1.3) 181 <0.001

1.0 (1.0e1.2) 104 0.11

bles and as frequencies (%) for categorical variables.
sease, HDL: high-density lipoprotein.
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4. Discussion

In the present study, non-statin treated children with maternal
FH inheritance did not have significantly different plasma levels of
lipids or CRP than children with paternal FH inheritance. However,
FH children with LDL receptor negative mutations, regardless of
maternal or paternal FH origin, had a more unfavorable lipid profile
than children with other LDL receptor mutations. Moreover, the
median CRP levels were similar in these two groups with different
types of mutations.

Cholesterol-lowering drugs are contraindicated during preg-
nancy and lactation, and LDL-cholesterol may increase 2e3-fold in
FH women due to the lack of medication combined with the normal
physiological increase during pregnancy [3]. The consequence of
this potentially unfavorably “in utero” environment is unknown. It
has been hypothesized that offspring born of FHwomen could carry
an increased risk for disease later in life i.e. in adolescence and
adulthood, compared to offspring with paternal FH. Despite these
suggestions of an unfavorable “in utero” effect, studies have pro-
duced inconsistent results so far, confirming the effects of the type
of FH transmission on cardiovascular risk in the offspring
[12e14,21]. Tonstad and co-workers found no significant difference
in the carotid IMT and prevalence of atherosclerotic plaques in
children who had inherited FH maternally or paternally [21], and
recently Kusters et al. found no difference in cardiovascular risk
markers between offspring from FH mothers and FH fathers [13]. In
the latter study, a pooled analysis of LDL cholesterol, triglycerides or
IMT was performed from three different FH cohorts with age span
0e18 years, 8e30 years and 18e60 years, respectively. In contrast,
van Graf et al. [14] found that maternal (compared to paternal)
hereditary hypercholesterolemia led to increase in total cholesterol,
LDL cholesterol and ApoB levels, i.e. established risk markers for
CVD, in their adult offspring. We have previously observed, in a
small study, that healthy siblings and FH children, born from
mothers with FH had increased levels of certain haemostatic
markers compared to healthy control children [22]. Moreover, a
Dutch study which was performed in a pedigree before statins were
used, showed higher all-causemortality rates, themost indisputable
endpoint, when FH is transmitted by the mother, supporting the
fetal origin of adulthood disease hypothesis [12]. In the present
study, examining a large number of FH children, we show that the
unfavorably maternal environment, does not seem to induce a long-
term unfavorably phenotype with regard to plasma lipid and CRP
levels. Our data extend the findings in a recent large Norwegian-
based registry study comprising about 2000 births, where it was
demonstrated that women with FH did not have a higher risk of
preterm delivery or of having infants with low birth weight or
congenital malformations thanwomen in general [23], indicating no
detrimental effect of hypercholesterolemia on birth outcomes.

Our findings confirm that FH children with LDL receptor nega-
tive mutations, as with adult FH subjects, are characterized with
higher total and LDL cholesterol as previously described in a
smaller study and among adult FH subjects [20,24]. Our data extend
these previous observations by showing that these children are
characterized by a more overall unfavorably lipid profile including
not only higher total and LDL cholesterol plasma levels, but
concomitantly reduced HDL cholesterol and ApoA1 plasma levels.
However, we did not find increased CRP levels among the carriers
of LDL receptor negative mutations. Earlier studies have shown that
clinical symptoms of FH and the risk of CVD are characterized by a
low-grade systemic inflammation [25,26]. Our findings underscore
that the FH genotype strongly influences the phenotypic expres-
sion, but the early stages of atherogenesis in young FH children are
not reflected in CRP levels. Previously, we have observed signifi-
cantly increased carotid IMT's in children with heterozygous FH
from age 12 years onwards [27]. Therefore, the children in our
present study might have been too young in order for us to achieve
differences in the markers of atherosclerosis. However, although
CRP is a reliable marker of inflammation in adults, we cannot rule
out the possibility that other relevant inflammatory markers may
have shown differences. Indeed, in an earlier study we found that
children with FH have an inflammatory imbalance [28] between
tumor necrosis factor-a and interleukin-10 compared with controls
[29], despite similar plasma levels of CRP. Thus, although our pre-
sent findings do not support that maternal hypercholesterolemia
may influence atherosclerosis in offspring, this possibility should
not be excluded.

The major strength of the present study is the large cohort of
non-statin treated FH children. Hypercholesterolemia in adults is
markedly influenced by lifestyle factors. These factors represent an
important source of confounders for studies on the pure role of LDL
in inflammation and atherosclerosis. A limitation of the study is the
lack of end-points, surrogate end-points such as measurement of
IMT and measurement of other markers of the atherosclerotic
process such as endothelial dysfunction markers. Moreover, a
limitation when classifying the LDL-receptor negative mutations is
that functional data on LDL receptor activity does not exists for all
mutation-types. We have divided the mutations according to pre-
vious published data [17] on classification, but we cannot rule out
the possibility of misclassification.

In conclusion, maternal transmission of LDL receptor mutations
did not contribute to deteriorated lipid profiles in the FH offspring.
Although childrenwith LDL receptor negative mutations had a more
unfavorable lipid profile than those with mutations with residual
function, we did not find differences in CRP levels between these two
groups. In children with FH, lifelong exposure to hypercholesterole-
mia (cholesterol year score) is probably the main driver of athero-
sclerosis rather than maternal/paternal inheritance of the condition.
Thus, our findings do not support the fetal origin of adulthood dis-
ease hypothesis, while at the same time not excluding the hypothesis
since other pathways leading to atherosclerosis may be involved
such as endothelial dysfunction. Future research is required
including measurement of markers of endothelial dysfunction, a
wider spectrum of inflammatory markers and other more specific
markers of the atherosclerotic process after extended follow-up.
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